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Perturbation theory for the triple-well anharmonic 
oscillator 
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Institute of Physics, Latvian SSR Academy of Sciences, 229021 Riga, Salaspils, USSR 

Received 2 June 1982 

Abstract. We study perturbation theory at large order for the one-dimensional Schrodinger 
equation with the potential U ( X ) = X * ( R * - X ~ ) ~ / ~ R ~ ,  where R is a large parameter. It 
is shown that for the states which ‘originate’ from the middle well, in addition to the 
Rayleigh-Schrodinger expansion of the energy eigenvalues in power series of 1/R there 
is an exponentially small shift in R 2  due to the tunnelling into the side wells. The states 
which ‘belong’ to the side wells exhibit asymptotic eigenvalue degeneracy. Non-modal 
solutions for these states are also found, and by using them we determine the large-k 
behaviour of the general kth Rayleigh-Schrodinger coefficient. The comparison of 
asymptotic formulae with the results of numerical calculations shows an excellent agree- 
ment where it  is expected. 

1. Introduction 

This paper is concerned with the nature of Rayleigh-Schrodinger perturbation theory 
for the triple-well anharmonic oscillator described by the Schrodinger equation 

(1) 

We assume that R is a large parameter. The potential U(x)=x2(R2-x2)*/8R4 has 
three minima at x = 0, x = *R. The boundary condition limlxi+m $ ( x )  = 0 selects out 
a discrete set of energy eigenvalues E which naturally is subdivided into two subsets. 
We refer to them later as states I and states 11. States I ‘originate’ from the middle 
well at x = 0. Their energy eigenvalues E can be approximated by the perturbation 
expansion 

d2$/dx2+[2E -x2(R2 - x ~ ) ~ / ~ R ~ ] $  = 0. 

E = & + : +  1 Ek/RZk. (2) 
k = l  

States I1 ‘originate’ from two degenerate wells centred at x = *R, Corresponding 
energy eigenvalues E ,  and E, possess double-well character 

Eo = )(E, + E,) = n ’ + $ + 1 EbIR 2 k  
k = l  

(3) 

The symbols n and n’  in (2) and (3) denote positive integers or zeros. The coefficients 
Ek and E ;  can be found by using standard perturbation theory. 

In our paper we consider two problems which, as will be seen later on, are closely 
connected. 

First, we obtain the exponentially small corrections to the energy eigenvalues 
defined by Rayleigh-Schrodinger expansions (2) and (3), i.e. terms which vanish more 
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rapidly than any power (R)-2k as R-’ tends to zero. For states I1 the meaning of 
such a correction is well known-it gives the energy eigenvalue splitting AE = E,-E, ,  
whereas for states I it represents an energy shift 6E which should be added to the 
expansion (1) to improve the asymptotic value of E. 

Second, we determine the large-k behaviour of the coefficients Ek and E;. This 
problem has been widely discussed. For a comprehensive review the reader may 
consult the article of Simon (1982). 

We present in detail the procedure for the states I. For states I1 only the results 
we obtained are quoted. 

Recently, equation (1) was studied as a part of a more general problem by Benassi 
et a1 (1979). In particular, these authors (Benassi et a1 1979) have obtained numerical 
results for the non-modal solution of equation (1) for the ’ground state’ resonance. 
The comparison of our results with those of Benassi et a1 (1979) will be given. 

It is important to mention that the problem considered is essentially different from 
those where potentials have only two identical wells, i.e. double-well problems. This 
remark applies to both states I and states 11. The peculiarity arises from the need to 
account for the particle tunnelling into the well, which is not identical with that one 
where the particle is located. 

R J Damburg and R Kh Propin 

2. States I 

Due to the symmetry of the problem with respect to the sign of x it is sufficient to 
find the solution of equation (1) for x 2 0. Our solution scheme is based on dividing 
the x axis into three regions: 

Region I O s x  << R.  

Region I1 

Region I11 

I T  I < 1, where 7 = x/R. (4) 

/q I << R,  where q = R - x. 

After the solutions in these regions are found, we link them together; taking into 
account the boundary condition, we deduce the eigenfunction of equation (1). 

2.1. Region I 

Substituting the new function 

4 = exp(-~x2+x4/8R’)cp(x) ( 5 )  

into (l), we obtain the following equation for cp: 

In zero order of 1/R2,  E = fn +$, where n is a quantum number. Except for n = 0, 
n does not coincide with the number of the state of equation (1) since there are states 
I1 where the particle is located at x = *R. 

For symmetrical states I (even n )  the solution of equation (6 )  can be obtained as 

(7) c p =  -TFpk(x)% ~ ( x )  = aSk’F(-in -s; 5; 2x 1, 
k 1 1 1 2  

k = O  R s = - 2 k  
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where E is taken in the form (2), andF(a  ; c ; y )  is a confluent hypergeometric function. 
U:‘’ and Ek are to be determined from recurrence relations which follow from (6): 

k - 1  
= c E&-ia:’-;(n +2s-&n +2s-l)ajk-;’’ 

i=n , -  

+&I +2s)(n + 2s + 1) +&zjk -”  -$(n + 2s +3)(n + 2s + 2)&” 

+ l(n + 2s + 2)(n + 2s + 4)ajk;21’, (8) 0) - - SSO. 
In the first power of 1/R2 we obtain a?; =-$n($n-l) ,  U?; =$n(n-$) ,  a i ” =  
-$(n + l)(n +;); ab” is an arbitrary constant and we take it equal to zero, 

Eo = +$- (6n2 + 6n + 3)/4R2 + O(R-4). (9) 

If one is interested only in the Rayleigh-Schrodinger expansion (2) for EO then it is 
sufficient to have relation (8). But we show that expansion (2) is not quite satisfactory 
as an asymptotic formula for E. An exponentially small shift SE should be added in 
order to make the asymptotic expansion for E more consistent, i.e. we need E = 
Eo + SE. In order to perform our task we used the procedure elaborated by us earlier 
(Damburg and Propin 1968a, b, 1971, 1974). The essential part of this procedure 
consists in the substitution n + n  + A  where A is an exponentially small value which 
is characteristic for different problems. In order to find A we need solutions of equation 
(1) for regions I1 and 111. In principle, finding A and consequently SE expanded in 
powers of 1/R2 can be reduced to a system of recurrence relations. But we limit our 
consideration to terms up to the order of 1/R2. 

2.2. Region 11 

The equation for cpl here can be written as 

Taking into account (9), we obtain 

$1 = exp[R2(-a772+~774)1cp1(71) 

n ( n  - 1) 12n2+ 12n +21 
x 1+-  cy)- 2 2 +  [ R’ ( 2q2(1-7 ) 16(1-q2)’ 

) + O(R -4)], 
6n2+6n + 3  + 

4 0  - q 2 )  

Similarly, we can find the second solution of equation (1) for the region 11, 

2 1  2 - 1  4 (1-71 1 [ l + & Y +  1 
(n  + l ) (n  + 2) 
2$(1 - q 2 y  

2 n/2-1/4 

77 n + l  
$2 =Dz exp[R (37 871 11 

) + O(R-4)]. 
12n2+12n +21 - 6n2+6n + 3  

16(1-q2)2 4(1-v2)  
- 

In (11) and (12) D1, D2, Cil) and Cil) are constants which have to be determined by 
the linking procedure performed in the region 1 << x << R. 
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2.3. Region 111 

For the function Q I  we have for this region the equation 

With accuracy up to the terms of O(R-3) we find 

~ L ~ = A  

+R-’[bbo’4F(-$n +i;i;q2)+b(-OlqF(-$n + E ; $ ; q 2 )  

+b?iqF(-$n + ? 8 ? ; $ ; q 2 ) ] + R - 2 [ d : 1 ’ F ( - a n - ~ ; $ ; q 2 )  

+db”F(-;n +Q; i; q2)+d(l:F(--in +p; 4; q 2 )  

+d!!$(-an +Y; $; q2)+d(l:F(-!n +?; i; q 2 ) ] }  (14) 

where 

1 1  9 b?‘; = - g ( n  - ~ ) ( n  -?), (0) - 3 1 2 b r ’  = $(n + $ ) 2 ,  6-1 - 4 h - 5 )  , 
(15) d\’) = -&n +$)(9n2+41n +?), dl‘: = -&(n - $ ) ( 2 n 2 -  10n +?), 9 

(1) 1 1 9 17 di‘: =&(n -$)(a -&6n - l l ) ,  d-3 = - z ( n  - s ) (n  -z)(n -T) .  

Constants A and db” are to be determined by the linking procedure in the region 
1 << q << R. The second fundamental solution +b2 of equation (1) for region I11 can be 
obtained .if in (14) the following substitutions are made: 

r ( c ) r ( a  - c + 1) 
r(a)r(z - c l  F ( a ; c ;  y ) - ’F(a ;  c ;  y ) -  Y ’ - ~ F ( U  - C  + 1;  2 - C ;  y ) .  (16) 

So, in the zero order of 1/R,  cL2 in region I11 can be presented as 

2.4. Linking procedure 

In order to avoid writing out cumbersome expressions we limit our considerations 
still more by keeping to the zero order of 1/R.  By using formulae given above, it is 
easy to extend our derivation up to the next order, i.e. up to the terms -1/R2.  

As we noted above we should first make the substitution n + n + A  ( A  being 
exponentially small) in (7). After such substitution and corresponding expansion in 
powers of A are performed (as described by Damburg and Propin (1971)), we get for 
the region 1 << x << R 
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For the same region 1 << x << R for functions CcI1 and lj12 defined by (1 1) and (12) we obtain 

t,bl =DIR-"xn exp(-$x2)[1+O(x-2)], 

42 = D ~ R ~ + ' X - ~ - ~  exp(ix2)[1 +o(x-')]. 

Therefore, 

The total function for the region I1 is 

* = * 1 + * 2 .  (21) 

Consider now the linking region 1 << q << R. Here for functions (11) and (12) we get 

Similarly by considering formulae (14) and (17), 

Comparing (22), (23) and (24), (25), we determine A and express B through A. Finally, 
it is necessary to choose the proper asymptotic behaviour for (I, = q!rl + $2 at q + -co 
(i.e. x + CO). The function should decrease exponentially and this requirement yields 
A = -2B. As a result we obtain 

A = Ao[l+ K 1/R2 + O(R-4)], 

Formula (26) is obtained for even n. For odd n, the corresponding formula differs 
from (26) only in sign, i.e. Ao+-Ao .  Now we determine the energy shift SE by 
substituting in (2) n + A  instead of n, and after expanding Eo(n + A )  in powers of A 
retaining terms of the first order of A. So we get E =Eo+SE where 

E 0 -1 - 2 l t  + 5 - (6n + 6n + 3)/4R + O(R-4), 

2n/2+5/4 r ( i n  e x p ( - 9  + i ) r (n  ') + 1) (1-72n2+120n 8R2 +63 + O(R -4)). 

~ 3 n + 3 / 2  

SE = (-l)n+l 

2.5. Zevel width'and the large-k behaviour of Ek 

Due to the fact that the first indices in the confluent hypergeometric functions in (17) 
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are fractional, the function (17) has different branches at q -$ cx). Choosing instead of 
(25) 

we obtain as a result the non-modal asymptotic solution of equation (1) considered 
recently by Benassi et a1 (1979), where 

E = E o + &  y = 21SEI. (29) 

Eo is determined as previously by (2). Benassi et a1 (1979), relying upon intuition, 
had presented the leading term for y for the ‘ground state’. The expression given by 
them has correct exponent by incorrect pre-exponential multiplier. 

After we have obtained the non-modal solution of equation (1) and consequently 
y, we can derive the la rge4  behaviour for coefficients Ek in (2) by applying the 
procedure proposed by Bender and Wu (1973) and Simon (1970,1982): 

2.6. Comparison with the results of numerical calculations 

We have solved equation (1) numerically for different values of R for the ground and 
the first excited states. In addition, by using recurrence relations (8), exact values of 
the coefficients Ek were determined. These coefficients are necessary both for the 
calculations of asymptotic values of Eo by using (2) and for comparison with formula 
(30). 

In table 1, the numerical results of Benassi et a1 (1979) for the ‘ground state’ 
resonance of equation (1) are also given. They correspond, as mentioned earlier, to 
our non-modal solution at n = 0. 

In table 2, results for the first excited state are presented. According to formula 
(27), E has different sign for odd and even n ; this is seen from tables 1 and 2. 

When calculating Eo from the Rayleigh-Schrodinger expansion (2), we invoked a 
standard rule for asymptotic expansions, terminating just before the term smallest in 
magnitude. The first omitted term by order of magnitude is equal to the intrinsic 
error of the expansion (2). 

In all cases considered the error was essentially smaller than [SEI, and with the 
increasing of R the ratio of the error to (SEI was decreasing. Thus, the necessity to 
bring in SE when calculating E = Eo+SE is established not only on the basis of 
theoretical consideration, but is also confirmed numerically. 

As mentioned above, the error in calculating E = Eo + SE is decreasing when R 
is increasing. At the same time, it is seen from table 2 that the value SE = E,,, - EO 
has slightly uneven behaviour when R is increasing. The explanation is evident: the 
number of terms taken for calculation of Eo is increased by jumps whereas R is 
increasing gradually. 
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Table 1. n =Os 

E, formula (2) 
First discarded 

g = J Z j R  E,,, E’* Eo NS term in (2) 

0.20 0.233 119 073 0.233 138 944 0.233 1397 11 0.44 x 10-~  
0.22 0.228 671 492 0.228 813 420 0.228 8090 9 0.34 x 1 0 - ~  
0.24 0.223 010 610 0.223 605 098 0.223 6203 7 0 . 1 6 ~  1 0 - ~  
0.26 0.215 847 272 0.217 528 843 0.217 8898 6 0.51 x 10-~  
0.28 0.207 294 077 0.210 833 623 0.210 3548 6 0.125 X lo-’ 
0.30 0.197 918 128 0.203 901 962 0.203 3179 4 0.25 x lo-’ 

g = J 2 j ~  SE=E=E,,,-E’ trt 
One term, Two terms, 
formula (27) formula (27) 

0.20 -0.198 71 x 0.197 7 0 ~  0.240 43 X 0.202 56 x 1 0 - ~  
0.22 -0.141 93 x 0.142 61 X 0.182 41 x 0.147 51 x 
0.24 -0.594 49 x 0.606 15 X 0.833 6 x 0.644 5 x 
0.26 -0.168 16x lo-’ 0.177 60x lo-’ 0.267 0 x lo-’ 0.195 9 x  lo-’ 
0.28 -0.353 95 x lo-’ 0.397 9 x lo-’ 0.662 0 x lo-’ 0.457 5 x lo-’ 
0.30 -0.598 38 x lo-’ 0.735 0 x lo-’ 1.357 X lo-’ 0.876 3 X lo-’ 

t Data of Benassi er a1 (1979), who adopted different notations in equation (1). Their value of E is four 
times larger than ours. We use in table 1 our present notations. The value of g is introduced to make a 
more convenient comparison of our results with those of Benassi et a1 (1979). 
$ N is the number of terms taken into account in formula (2). 

Table 2. n = 1. 

SE, formula (27), SE,formula(27), 
R E,,, EO N +  E n u m - E o  one term two terms 
~~~~~ ~~~ ~ ~ 

7 0.654 974 699 0.651 148 4 9 0.3826x lo-’ 0.9971 x lo-’ 0.3485 x lo-’ 
8 0.681 034 189 0.680 827 34 13 0 . 2 0 6 8 ~  0 . 4 2 7 6 ~  0.2146X 
9 0.697 941 260 0.697 934 854 18 0 . 6 4 0 6 ~  lo-’ 1 . 0 3 6 ~  0.6283 X 

10 0.708 987 349 0.708 987 249 23 1.00 x 1.4405 x 0.9813 x lo-’ 

t N is the number of terms taken into account in formula (2). 

Another numerical test for our asymptotic formulae can give us the comparison 
of the results obtained by using formula (30) with the exact values of coefficients Ek. 
Results are presented in tables 3-5. 

Table 3. Ground state, n = 0. 

Formula (30), Formula (30), 
k leading term two terms Ek,num 

10 -0.654 86 x 10” -0.522 63 x 10” -0.499 05 X 10” 
20 -0.388 92 X lo3’ -0.350 15 X lo3’ -0.347 95 x lo3’ 
50 -0.447 04 X log4 -0.429 35 x iog4 -0.429 03 x log4 
70 -0.178 0 6 ~  -0.173 04 x -0.172 975 x 
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Table 4. n = 1. 

Formula (30), Formula (30), 
k leading term two terms Ek.num 

~ ~~ 

10 -1.825 98 x l O I 4  -0.532 58 X l O I 4  -0.627 72 x l O I 4  

20 -0.286 19 x -0.178 87 x -0.182 29x 

70 -0.814 69 X -0.723 57 x -0.724 76 x loL4’ 
50 -0.124 51 x log8 -0.105 15 x log8 -0.105 S O X  

Table 5. n = 2. 

Formula (30), Formula (30), 
k leading term two terms Ek.num 

20 -0.851 88 x lo3’ -0.160 31 x lo3’ -0.296 02 x 

70 -0.140 29 x -0.104 67 x -0.107 02 x 

30 -0.274 48 x los6 -0.119 69 x -0.141 71 x 
60 -0.615 51 x -0.434 35 x -0.448 14 x 

2.7. One application of asymptotic formula (30) 

There is supposition (Simon 1982) that the study of large-k behaviour of Ek can 
provide a key to the problem of summability of asymptotically diverging Rayleigh- 
Schrodinger expansions similar to (2). We would like to indicate here another applica- 
tion of formula (30). 

When applying formula (2) for EO, we terminated the series just before the smallest 
term. The question arises as to how many terms we should keep then in formula (27) 
for SE when calculating E =EO + SE. It is clear that all terms in (27) for SE which 
are smaller in magnitude than the first term discarded in (2) are meaningless. From 
(30) it is easy to estimate the maximum value of R where the second term in (27) 
becomes smaller than the intrinsic error of (2). From 

Ekm/(Ek,-1R2) 1 (31) 

we find 

(32) 2 3  1 k,=iR -3n-t-Z. 

Therefore, the intrinsic error of (2) by order of magnitude is 

). (33) 
72n + 120n + 63 2-n/2+ 1 / 4 ~  3n + 1 /2  

exp( - $R *)( 1 - 
8 R 2  

The ratio of the second term in (27) to (33) becomes smaller than 1 at 

) *  (34) 
v% 72n2+120n + 6 3  64 

R >23/2 8 (1C,i(72n2+120n +63)  

From (34) it follows that at n = 0, R > 6.5 and at n = 1, R > 22. As can be seen from 
table 1, this estimate is in full agreement with numerical data. 

We were discussing above the use of formula (27) for SE in the calculation 
E = Eo+SE. But the value SE itself can be found numerically with much higher 
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accuracy; then, comparing SE with formula (27), all decreasing terms in (27) (we 
have calculated only two of them) can be accounted for except, as a general rule, in 
asymptotic expansions, the last one. Such a value of SE can be obtained if one 
calculates the difference between the numerical energy eigenvalues E for modal and 
non-modal solutions of equation (1) for the same state. An example is given in table 
1 for n = 0. It is a remarkable fact that we have here a situation quite similar to that 
encountered in the symmetrical double-well problem when calculating A E  = E,  - E,. 

3. States I1 

The procedure of finding asymptotic solutions for this case is similar and was presented 
by us earlier (Damburg and Propin 1974). However, in order to make this article 
more complete we quote here the results obtained: 

For n = 0 we found the next term for AE to be 

AE = J 2 / , R 3  exp(- $R ’)[1 - 141 /8R2 + O(R-4)]. (36) 
Comparison of formula (36) with exact numerical data shows that at R = 6, (36) gives 
an error -18% and at R = 12.5 an error -0.1%. 

In the above-mentioned paper (Damburg and Propin 1974), non-modal solutions 
for the states I1 were not considered. Quite similarly to the previously considered 
case, the solutions are given by the expression 

E = Eo+$iy (37) 
where y = U. 

With y we find the large-k behaviour for E ;  : 

[l +O(k-’)] .  
r (2n  + 1)(6n + 2 k  + l)!! 2 k + 6 n + 3 / 2  

E; =-  
7i- ryn + 1 ) r ( 4 ~  + 2) 

For n = 0, 

E ;  = -(2k+3’2/7i-)(2k + 1)!![1-141/16(2k + 1)+O(k-2)]. (39) 
Comparison of (39) with the exact numerical values of EL is presented in table 6. 

Table 6. Ground state, n = 0. 

Formula (35), Formula (35), 
k leading term two terms Ek,num 

10 -1.267 58x lo i3  -0.735 65 X l O l 3  -0.694 25 x 1013 
20 -1.237 94x 1031 -0.971 86x IO3’ -0.965 22 x lo3’ 
30 -0.172 28 x lo5’ -0.147 39 x -0.147 12x lo5* 
40 -0.639 68 x -0.570 08 x -0.569 59 x 
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